Large-scale genome-wide association study of heart failure identifies novel susceptibility loci and provides a platform for drug target validation

Albert Henry¹

✓ @AH_Albert_Henry www.alberthenry.world ✓ albert.henry.16@ucl.ac.uk

Contributors

Sonia Shah², Carolina Rosselli³, Honghuang Lin⁴, Åsa K. Hedman⁵, Anders Malarstig⁵, HERMES Consortium, Folkert W. Asselbergs⁶, Aroon D. Hingorani¹, Karoline Kuchenbaecker⁷, Patrick T. Ellinor³, Chim C. Lang⁸, J. Gustav Smith⁹, Ramachandran S. Vasan⁴, Daniel I. Swerdlow¹, R. Thomas Lumbers¹⁰

eart failure (HF) is the most rapidly growing cardiovascular condition worldwide with unmet therapeutic needs¹. Genetic information can be used to inform drug target identification and validation, but challenge remains due to limited understanding of the genetic basis of HF.

METHODS

- 1. We conducted a meta-analysis of **genome-wide association studies** (GWAS) of HF from 26 studies with European ancestries, comprising 47,309 cases and 930,014 controls.
- 2. We performed **hierarchical agglomerative clustering** of sentinel variants in each independent loci and compared the genetic association estimates with related **risk factors** and **quantitative** cardiovascular imaging traits.
- 3. To estimate the extent to which the association signals at each loci are mediated by upstream traits, we performed **multi-trait-based conditional and joint analysis**² using GWAS summary statististics of known HF risk factors.
- 4. We performed **mendelian randomisation** (MR) analyses for **18 plasma protein biomarkers** associated with incident heart failure³ using *cis*-acting genetic instruments derived from GWAS meta-analysis of plasma proteins from the SCALLOP consortium⁴.

DISCUSSION

- 1. We conducted the largest GWAS meta-analysis of HF to date and identified **12 independent variants at 11 genomic loci**.
- 2. We identified clusters of HF risk loci relating to **coronary artery** disease, atrial fibrillation, and reduced left ventricular systolic **function**, which may indicate different disease subtypes.
- 3. Eight of the 11 identified risk loci show small attenuation of effect upon conditioning on major risk factors, suggesting **alternative mechanisms** leading to HF.
- 4. MR analysis reveals possible **reverse causation** and **residual confoundings** in observational studies of plasma proteins. Triangulating this evidence to establish the causal effect could inform drug target identification and validation for HF.

REFERENCES

- 1. Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016 Jun;13(6):368-378.
- 2. Zhu Z, Zheng Z, Zhang F, et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun. 2018 Jan 15;9(1):224.
- 3. Stenemo M, Nowak C, Byberg L, et al. Circulating proteins as predictors of incident heart failure in the elderly. Eur J Heart Fail. 2018 Jan;20(1):55-62.
- 4. www.olink.com/scallop/

A GWAS meta-analysis of:

47,309 heart failure cases 26 studies with European ancestries 8,246,881 variants (MAF > 1%)

12 independent variants identified at **11** genomic loci

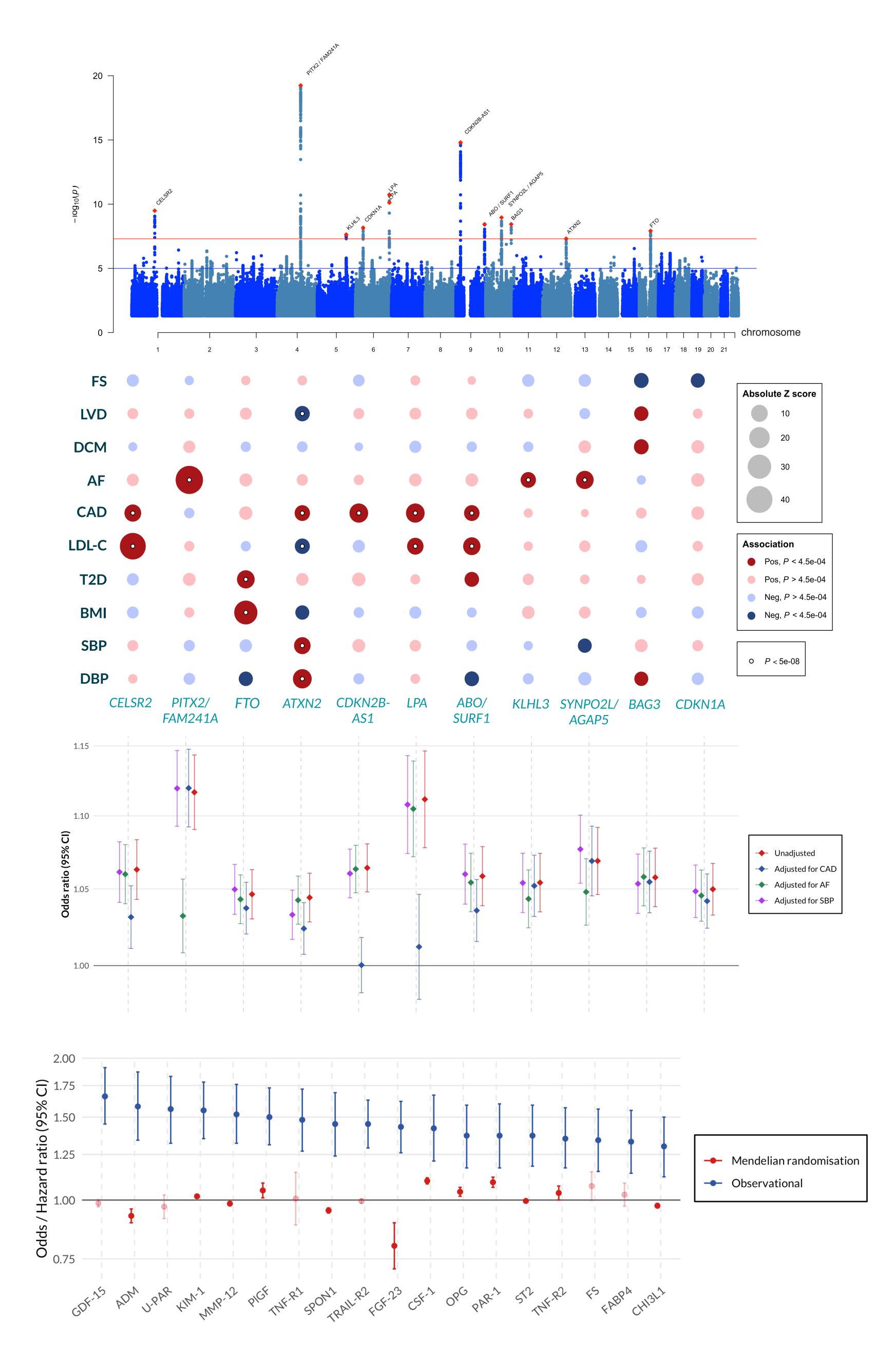
Agglomerative clustering

identifies clusters of susceptibility loci related to heart failure subtypes

Conditional analysis

reveals pathways not fully mediated by common risk factors

Mendelian randomisation


demonstrates the potential value of these results for drug target identification and validation

GWAS summary statistics available on the Cardiovascular Disease Knowledge Portal: <u>broadcvdi.org/informational/data</u>

pre-print available on <u>viorxiv.org/content/10.1101/682013v1</u>

article to be published on Nat Comms.

Abbreviations HF, Heart failure; FS, fractional shortening; LVD, left ventricular dimension; DCM, dilated cardiomyopathy; AF, atrial fibrillation; CAD, coronary artery disease; LDL-C; low density lipoprotein cholesterol; BMI, body mass index; T2D, type 2 diabetes; SBP, systolic blood pressure; DBP, diasolic blood pressure

Affiliations

¹Institute of Cardiovascular Science, University College London, UK. ²Institute for Molecular Bioscience, The University of Queensland, Australia. ³Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, USA. ⁴National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, USA. ⁵Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institute, Sweden. ⁶Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University of Utrecht, The Netherlands. 7UCL Genetics Institute, University College London, UK. 8Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, UK. ⁹Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Sweden. ¹⁰Institute of Health Informatics, University College London, UK.

