

Sleep duration and cognition:

Application of linear and non-linear Mendelian randomization in UK Biobank

Albert Henry

BHF PhD in Cardiovascular Biomedicine Institute of Cardiovascular Science University College London

Short and long sleep duration have been associated with poorer cognition in observational studies

Short and long sleep duration have been associated with poorer cognition in observational studies

Confounding factors?

Reverse causation?

Randomized trial is not practical

Short and long sleep duration have been associated with poorer cognition in observational studies

Short and long sleep duration have been associated with poorer cognition in observational studies

Mendelian randomization

Study design

Present study:

- N = 395 803
- European ancestries
- Mean age = 56.9 ± 8 years
- 54% Female

Bycroft C, et al. (2018)

Exposure

Sleep duration

- Baseline self-reported average hours of sleep (including naps) in every 24 hours
- Excluding sleep duration <2 hrs/day and >12 hrs/day
- Avg. = 7.17 hrs/day (1.07 SD)

≤5 hrs/day	6 hrs/day	7 hrs/day	8 hrs/day	9 hrs/day	≥ 10 hrs/day
<i>N</i> = 19 926	<i>N</i> = 73 813	<i>N</i> = 155 333	<i>N</i> = 116 573	N = 23 536	N = 6622
(5.0%)	(18.7%)	(39.3%)	(29.5%)	(6.0%)	(1.7%)

Genetic instruments

- 0.69% variance explained
- Avg. effect per allele = 1.04 min (0.34 SD)
- PAX8 has largest effect = 2.44 min (0.16 SE)

UC

Outcomes

Visual memory

- Number of errors made in pairs-matching test
- Higher value \rightarrow poorer visual memory

Reaction time

- Mean duration to first press of snap-button summed over rounds in which both cards matched
- Higher value \rightarrow poorer (slower) reaction time

Study design: Linear and Non-linear MR

Results: Linear MR

Sample - Meta A & B - B on A - A on B - All

Results: Linear MR

Sample - Meta A & B - B on A - A on B - All

Non-linear MR with piecewise linear model

Staley JR, Burgess S. Genet Epidemiol. (2017)

Non-linear MR with piecewise linear model

Staley JR, Burgess S. Genet Epidemiol. (2017)

• Derive IV-free exposure

Non-linear MR with piecewise linear model

Staley JR, Burgess S. Genet Epidemiol. (2017)

- Derive IV-free exposure
- Stratify on the IV-free exposure

Non-linear MR with piecewise linear model

Staley JR, Burgess S. Genet Epidemiol. (2017)

- Derive IV-free exposure
- Stratify on the IV-free exposure
- Estimate *localized average causal effect* (LACE) in each stratum

 $LACE = \frac{coef \ Y \sim IV_{stratum}}{coef \ X \sim IV}$

• Test of non-linearity (Cochran's Q or quadratic)

Non-linear MR with piecewise linear model

Staley JR, Burgess S. Genet Epidemiol. (2017)

- Derive IV-free exposure
- Stratify on the IV-free exposure
- Estimate *localized average causal effect* (LACE) in each stratum

 $LACE = \frac{coef \ Y \sim IV_{stratum}}{coef \ X \sim IV}$

- Test of non-linearity (Cochran's Q or quadratic)
- Set overall intercept as a reference point, e.g. at *Mean X*

Non-linear MR with piecewise linear model

Staley JR, Burgess S. Genet Epidemiol. (2017)

- Derive IV-free exposure
- Stratify on the IV-free exposure
- Estimate *localized average causal effect* (LACE) in each stratum

 $LACE = \frac{coef \ Y \sim IV_{stratum}}{coef \ X \sim IV}$

- Test of non-linearity (Cochran's Q or quadratic)
- Set overall intercept as a reference point, e.g. at *Mean X*
- Fit semiparametric piecewise linear model

Results: Non-linear MR

UC

Piecewise linear model with 3 strata

<~7 hrs/day: 5% poorer visual memory >~9 hrs/day: 9% poorer visual memory

<~7 and >~9 hrs/day: 2% slower reaction time

Limitation of piecewise linear model

- Three strata is not ideal
- It is not possible to fit the model on a discrete exposure with a few distinct values
- Workaround:

Add a small random noise to dediscretise sleep duration and rerun the analysis with 10 strata

••••

Repeat 10 times

Participant	Sleep duration (hrs/day)	X1	X2	X3	 X10
1	7	6.99	7.05	6.94	6.97
2	6	6.10	5.90	6.03	6.00
3	8	8.02	7.94	7.93	8.01
4	7	6.97	7.06	7.07	6.92
395 803	9	9.02	9.05	9.03	9.09

Fit piecewise linear MR model with 10 strata in each of the 10 de-discretised X values

Results: Visual memory

Non-Linear MR with 10 strata + de-discretised sleep duration

Results: Reaction time

Non-Linear MR with 10 strata + de-discretised sleep duration

- Observational and MR analysis results are consistent
- A linear increase in sleep duration is associated with poorer reaction time and visual memory with small effect size
- Non-linear (J-shaped) association is likely, hence the small linear effect size
- Improving sleep habits within the general population might be useful as a potential therapeutic target to improve cognition

For curious minds ...

The relationship between sleep duration, cognition and dementia: a Mendelian randomization study 3

Albert Henry ☎, Michail Katsoulis, Stefano Masi, Ghazaleh Fatemifar, Spiros Denaxas, Dionisio Acosta, Victoria Garfield, Caroline E Dale Author Notes

International Journal of Epidemiology, Volume 48, Issue 3, June 2019, Pages 849–860, https://doi.org/10.1093/ije/dyz071

Acknowledgments

Victoria Garfield Caroline E Dale Michail Katsoulis Stefano Masi Ghazaleh Fatemifar Spiros Denaxas Dionisio Acosta James Staley Stephen Burgess

